Self-Tuning Neural Controller and its Application
to a Non Linear System.

Alfonso Gomez', Alfonso Noriega', Alberto Aguadoz, and Roberto Salas®

! Facultad de Ingenicria, Universidad Auténoma de Querétaro, Querétaro, Qro.., México
2 ICIMAF, La Habana, Cuba
3 MIDE, Querétaro, Qro., México
{Alfonso Noriega, anoricga@uaq.mx}

Abstract - The performance of an industrial process control system equipped with a
conventional controller may be degraded severely by a long system-time delay, dcad
zone and/or saturation of actuator mechanisms, model and/or parameter uncertaintics,
and process noises. Recently it has been demonstrated that Antificial Neural Networks
can be used to control Non Linear Systems and also it was proposed that a Self-tuning
Neural Network implementation is possible with a real time permanent adjustment of
the weighting coefTicients based on the control error. In the present paper, the Self-
tuning Neural Network practical implementation results in a Non Linear Systems are
shown and a methodology to adjust the parameters is proposed. As part of the proposal
we present a practical method to accelerate net leaming by bounding neuron outputs
and a time variable learmning coefficient.
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I. Introduction

The best developed aspect of the mathematical systems theory, deals with the analysis and

synthesis of dynamical systems, using well established techniques based on linear

algebra, complex variable theory, and the theory of ordinary linear differential equations.

Since design techniques for dynamical systems are closely related to their stability
properties and since necessary and sufficient conditions for the stability of linear time-
invariant systems have been generated, well-known design methods have been established
for such systems. In contrast to this, the stability of nonlinear systems can be established
for the most part only on a system-by system basis and hence it is not surprising that
design procedures that simultaneously meet the requirements of stability, robustness, and
good dynamical response are not currently available for large classes of such systems.
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Narendra and Parthasarathy (1990), demonstrated that neural networks can be
effectively used for nonlinear dynamical systems identification and control. In that paper,
direct and indirect control approaches are discussed, explaining that at that moment,
methods for directly adjusting the parameters based on the output error (between the plant
and the reference model output) were not available. Based on low order nonlinear
dynamic systems simulation studies, suggested that identification and control using neural
network controllers can find wide application in many areas of applied science.

Later , Cui and Shin (1993) propose a direct adaptive controller and coordinator using
neural networks. One of the key problems in designing such a controller/coordinator is to
develop an efficient training algorithm. A neural network is usually trained using the
output errors of the network, not the controlled plant. However, when a neural network is
used to directly control a plant, the output errors of the network are unknown, because the
desired control actions are unknown. A simple training algorithm is proposed that enables
the neural network to be trained with the output errors of the controlled plant. The only a
priori knowledge of the controlled plant is the direction of its output response. However,
in that paper it is not discussed the influence of some training parameters, particularly the
learning coefficient, over the closed loop dynamics. It is also not remarked that practically
with a direct neural control scheme the training stage can be substituted by a permanent
and real time adaptation of the weighting coefficients of the neural network.

Recently, Noriega et al (2004), propose a self-tuning neural regulator, inspired in the
ideas of Cui and Shin, but with the particular feature that the previous training is
substituted by a permanent adjustment of the weighting coefficients based on the control
error. After an exhaustive simulation test of the algorithm in several non-linear systems
they conclude that a previous training of the network is not generally required; the
dynamical performance of the closed loop depends exclusively on the learning coefficient
magnitude and they found very convenient to use a variable learning coefficient, using an
expression as: "=n+aabs(ey), so the system present a fast response when the errors are
big and then to go slowly to the reference value.

In the present paper, the Self-tuning Neural Network practical implementation results,
in a Non Linear Systems are shown and a methodology to adjust the parameters is
proposed. As part of the proposal we present a practical method to accelerate net learning
by bounding neuron outputs and a time variable learning coefficient. In Section II, the
self-tuning neural controller structure is presented. The weighting coefficients adaptation

algorithm is developed in Section IIl and some recommendations to accelerate the
network learning (by bounding neuron outputs and using a time variable learning
coefficient) are given. Section IV presents the experimental results in a real non-linear
system. The paper concludes with Section V, where some directions are given for further

development.
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I1. Self Tuning Neural Controller Structure

In Figure 1, it is shown the scheme proposed by Noriega et al (2004), for the self-tuning
neural regulator. The neural network which assumes the regulator function, is a 3 neuron

layers perceptron (one hidden layer) which weighting coefficients are adjusted by a
modified back-propagation algorithm.

Fig. 1. Sclf-tuning ncural regulator.

In this case, instead of the net output error:

e, (1) =u,(1)—u(r) ()

it is used the process output error :
e, ()= y,()-y(1) @
to adjust the weighting coefficients.

In Fig. 2, it is represented the neural network controller structure. The output layer has
only one neuron because by the moment, we are limiting the analysis to one input-one

output processes. In the input layer the present and some previous values of the regulation
error are introduced, it means that:

x()=[e, () e,(t-1) .. e, (1-n)] 3)

e(r)
—

e(t=1) X u(t)

— H—

e(1-2

Fig. 2. Neural network controller structure.
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For the cases that were simulated in previous works, the value n=2 was sufficient 1,
obtain an adequate closed loop performance. It means that the number of input neuropg
can be 3. A similar number of hidden layer neurons was equally satisfactory.

I11. Weighting Coefficients Adaptation Algorithm

In figure 2, the weighting coefficients wj; and v for the hidden layer and output layer
input connections respectively, are shown. In what follows, we will detail the adaptation
algorithm for those coefficients, which ensures the minimization of a regulation error

e, () function.
The output of the j hidden layer neuron may be calculated by means of:

1
h = TR .=1,2,3.-.- 4
Tt J @)
Where:
3
S =Zwﬁxi (5)

At the same time, the output layer neuron output value will be:

1
Where:
3
r=2h )

As criteria to be minimized, we defined the function:

1 1
E(f)=7 D, (k)" ®
k=1

where it is supposed that the time has been discretized by using an equally-spaced small
time interval.

The minimization procedure consists, as it is known, in a movement in the negative
gradient direction of the function E(t) with respect to the weighting coefficients v; and ;.
The E(t) gradient is a multi-dimensional vector whose components are the partial
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GEQ) . FEQ)

derivatives 5vj ﬁwj, , it means that:
JE(1)
o”vl
VE()= EQ) ©)
ow

n

Let us first obtain the partial derivatives with respect to the coefficients of the output
neuron. Applying the chain rule, we get:

9EM) _ 2EM) %, , e, ,oun), Ir

10

ov; de, Jde, Ou(t) Jr dv, (%
e,

=6 (=D-u()(1-u(r)).h; (n

In (11) it is used the well known relation:

. 1 )
Ju(1) _ J(l +e”’ e’ e’

1
- = ——cun-u) 2
or or (1+e7)" 1+e7 1+e )

Let us define:

8'=e, u(t)(1-u(t)) (13)
Then: P
JE(1) ) 2
= —L (14)
v, o'k de

J u
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& , which can be interpreted as
de,
some kind of ‘“equivalent gain” of the process. Further we will make some
considerations about that term.

The partial derivative of function E(t) with respect to the weighting coefficients w,,

In the equation (14), it appears the partial derivative

can be obtained applying again the chain rule:

PEW) _JEW,%¢,, de, ,oun), dr Fh IS,

15
Gw,  de, de, out) or ok s, ow, 7
de,

==e, é’e' u()y(1—u())v, h,(1-h))x,

JE(1) r Je,
—— - , 16
7w, o' v, h(1-h)x, Je, (16)
Let us define: 52,=6"v,h,(1-h;) an

JE() Je

And then: 'gz=—52/ X; a"e: (18)

Using equations (14) and (18), the adjustments of weighting coefficients v, and w

can be made by means of the expressions :

de,
vJ(1+1)=vj(t)+(r]0,,e ) h, (19)
u
de,
W, (14D =w, () +(n5 2)6%) x, (20)
u
de,
#Vhere 7 is the so-called “learning coefTicient” and P is the “equivalent gain” of the
e

u

The main obstacle to apply the adjustment equations (19) and (20) is that in
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Jde

general the plant equivalent gain is unknown. However, in the above mentioned

u
paper by Cui and Shin (1993), it is demonstrated that it is only required to know the sign
of that term to ensure the convergence of the weighting coefficients, because the
magnitude can be incorporated in the leaming coefficient n if the non-restrictive
e, Oe

condition 2 < @ is accomplished. Besides, the sign of

e, de

u
estimated by means of a very simple auxiliary experiment, for instance, to apply a step
function at the process input.

The assumption that the sign of the gain remains constant in a neighborhood of the
operation point of the process is not very strong and it is accomplished in most practical
cases. Finally, in the worst of cases, real time estimation of the gain sign could be
incorporated, without great difficulties, in the control algorithm. Having in mind the
above considerations, the equations (19) and (20) could be written as follows:

can be easily

de,
vj(l+1)=vJ(t)+7]sign(ae’)5'h} [e3))
. e, )
w,(1+1) =wj,(t)+77s:gn(ae )%, x, (22)

The right value of learning coefficient 1 can be experimentally determined from the
observation of closed loop system performance when some changes are made in the
controlled variable set-point. The equations (21) and (22) for the proposed neural
controller structure, may be interpreted as the regulator adaptation equations instead of
training equations as it is normally done.

I11.1 Accelerating the Convergence of the Back-Propagation Algorithm

The back-propagation algorithm as described above encounters the following difficulty.
From equations (13), (17), (21) and (22), the increment of weighting coefficients Av )
and Aw ;i can be made by means of the expressions:

de,
Je,

Av, = nsign(—=2)8'h,  Where: 8'=e, u(r)(1-u())  (23)
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Aw, = 7 sign(

58", 2 2 1
567, %, Where: 6%,=5"v,h,(1=h) @9

When the actual values h/ and u(t) approach either extreme value, the factors

h, (1 —h]) and u(t)(l -—u(l)) in equations (23) and (24) make the error signal very

small. This implies that an output unit can be maximally wrong without producing a
strong error signal with which the weighting coefficients could be significantly adjusted.
This retards the search for a minimum in the error. This delay of the convergence is
caused by the derivative of the activation function. Unfortunately, any saturating response
function is bound to have this property: near the saturation point the derivative vanishes.

On the other hand, when a data acquisition card is used to carry the control signal
u (l), the actuator will be saturated for any value of u (t ) outside a range determined by
the card resolution. For instance, if the card resolution is 12 bits, the actuator will be
saturated for u (I) values outside the range [0.00024, 0.99976].

To overcome those difficulties, in the experimental part of this work we normalized the
error signal and bounded the weighting coefficients in the range [-4,4], so the algorithm
never gets stuck until the local minimum is reached and almost each change in the control

signal reflect in the plant behavior.

1V. Experimental Results

The experiment was carried out in a 166MHz Pentium processor computer, a “PCL-
818HG” data acquisition card (sample frequency < 100kHz), and a “412” DC servomotor
amplifier (24-90 VCD, 10 A). Figure 3 shows a general view of the experiment
implementation.

IV.1 System Description

In this system, a pole is connected to the potentiometer shaft, which is used to know the
angular position of the pole. A motor with 1600:1 gearbox is connected to the pole with
an “L” shaped extension ended in a ring. The ring diameter doubles the pole diameter so
there is a backslash in the connection. Depending on the angular position of the motor, for
the same motor velocity the pole velocity will change showing a faster response when the
ring is connected near the pole base. Figures 4a and 4b show the system at two different

positions.
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Fig. 3. General view of the experiment implementation.

Rl L N

Fig. 4a. System at 160°. Fig. 4b. System at 0°.

For later reference, a PID controller was tuned to achieve the fastest response of the
system without oscillation at step changes of the reference. The controller parameters
were adjusted to K = 100, KTtd = 9.2 ms. and (K / Tri) =(1/4.6 s). For those settings,
in Figures 5a and 5b the closed loop behavior of the controlled system and the control
signal are presented. The required time for the system, to follow the step change of the
reference from 23° to 90° is 7 seconds. Any further reduction of this time will lead to
oscillation for the step change of the reference from 90° to 157°.

Figure 6a presents the system behavior when the differential control action is eliminated
and the figure 6b shows the oscillating response around 157° set point.
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seconds

Fig 5a. System controlled whit a PID. Fig 5b. Control signal for a PID

seconds

Fig. 6a. System controlled whit a PL. Fig. 6b. Oscillating response around 157°.

The following charts present the experiments whit the self-tuning neural controller. For
this experiments the sample and control period were 0.47 ms.

Figure 7 shows the results of the experiments when the learning coefficient is “1 =
0.01”. The adaptation time of the weighting coefficients is 50 second and some
overshoots show at each reference step. Changing the learning coefficient to “t = 0.01 +
0.1abs(e,)", the adaptation time is reduced to 26 seconds (figure 8).

To reduce the adaptation time it is advisable to use a big learning coefficient at the
beginning, and then reduce it to achieve higher stability. Figure 9a shows the results when
the learning coefficient n'=n+aabs(e,) is used, and the parameters 1 and o are adjusted
for the first three changes of the reference as follows: (n =0.5 and a=5.0), (n =0.05 and
«=0.5) and (n =0.001 and a=0.01). The adaptation time is reduced to 12 seconds and the
required time for the system to follow the step change of the reference from 23° to 90° is
3 seconds (43% of the time required for the PID controller in the Figure 5a). The control
signal of the self-tuning neural controller, in Figure 9b presents a smoother behavior than
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the one shown for the PID in Figure 5b. Figures 10a and 10b present the evolution of two
weighting coefficients.
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Fig. 10a. Weighting coefficient W[1,2]. Fig. 10b. Weighting coefficient V[1].
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V. Conclusions

According to the experimental results we arise to the following conclusions: It is possible
to replace the previous training of the neural network controller by a permanent
adjustment of the weighting coefficients in real time applications. In Figure 9a. The
adaptation time of the weighting coefficients is 12 second and for that period the
algorithm performs 25,000 adaptation cycles. The bonding of the weighting coefficients,
and the use of a learning coefficient depending on the error magnitude and the evolution
of weighting coefficient played a key role to reduce the adaptation time. Regarding the
PID performance, the neural network controller reduced the response time of the system
without causing instability problems. On the other hand, the control signal from the neural
network controller presents a smoother behavior than the one achieved by the PID, this
increases the expected life of the motor and the amplifier by reducing extra heating a
vibrations.

To continue with this work it is important to apply the self-tuning neural network
controller to other none linear systems including the case of multivariable systems. At the
same time it is necessary to implement the algorithm in faster processors like DSP so the
adaptation time can be reduced.
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